HEAVY TETRAQUARKS

Rudolf Faustov

Dorodnicyn Computing Centre RAS, Moscow

(in collaboration with Dietmar Ebert and Vladimir Galkin)

Ebert, Faustov, Galkin (EFG) — Phys. Lett. B (2006) 214-219 [hep-ph/0512230] Ebert, Faustov, Galkin (EFG) — arXiv:0808.3912 [hep-ph]

New Charmonium-like Mesons Belle, BaBar, CDF, D0, CLEO

X(3872) X(3876) Y(3940) Z(4051) X(4160) Z(4248) Y(4260) Y(4360) Z(4430) Y(4660)

TETRAQUARKS in diquark-antidiquark picture

Tetraquarks — diquark and antidiquark in colour $\overline{3}$ and 3 configurations bound by colour forces \implies * typical hadronic size

- $\star~X$ should be split into two states $[cu][\bar{c}\bar{u}]$ and $[cd][\bar{c}\bar{d}]$ with $\Delta M\sim 7~{\rm MeV}$
- * existence of charged partners $X^+ = [cu][\bar{c}\bar{d}], X^- = [cd][\bar{c}\bar{u}]$
- * existence of tetraquarks with open $X_{s\bar{q}} = [cs][\bar{c}\bar{q}]$ and hidden $X_{s\bar{s}} = [cs][\bar{c}\bar{s}]$ strangeness * rich spectroscopy — radial and orbital excitations between diquarks

Both scalar (antisymmetric in flavour $[cq]_{S=0} = [cq]$) and axial vector (symmetric in flavour $[cq]_{S=1} = \{cq\}$) diquarks are considered

The $[cq][\bar{c}\bar{q}']$ ground states:

- * Two states with $J^{PC} = 0^{++}$: (*C* is defined for q = q') $X(0^{++}) = [cq]_{S=0}[\bar{c}\bar{q}']_{S=0}$ $X(0^{++'}) = [cq]_{S=1}[\bar{c}\bar{q}']_{S=1}$
- **\star** Three states with J = 1:

$$X(1^{++}) = \frac{1}{\sqrt{2}} ([cq]_{S=1}[\bar{c}\bar{q}']_{S=0} + [cq]_{S=0}[\bar{c}\bar{q}']_{S=1})$$
$$X(1^{+-}) = \frac{1}{\sqrt{2}} ([cq]_{S=0}[\bar{c}\bar{q}']_{S=1} - [cq]_{S=1}[\bar{c}\bar{q}']_{S=0})$$
$$X(1^{+-}) = [cq]_{S=1}[\bar{c}\bar{q}']_{S=1}$$

\star One state with $J^{PC} = 2^{++}$:

 $X(2^{++}) = [cq]_{S=1}[\bar{c}\bar{q}']_{S=1}$

RELATIVISTIC QUARK MODEL

Quasipotential equation of Schrödinger type:

$$\left(\frac{b^2(M)}{2\mu_R} - \frac{\mathbf{p}^2}{2\mu_R}\right)\Psi_M(\mathbf{p}) = \int \frac{d^3q}{(2\pi)^3} V(\mathbf{p}, \mathbf{q}; M)\Psi_M(\mathbf{q})$$

- $\ensuremath{\mathbf{p}}$ relative momentum of quarks
- M bound state mass ($M=E_1+E_2)$
- μ_R relativistic reduced mass:

$$\mu_R = \frac{E_1 E_2}{E_1 + E_2} = \frac{M^4 - (m_1^2 - m_2^2)^2}{4M^3}$$

b(M) - on-mass-shell relative momentum in cms:

$$b^{2}(M) = \frac{[M^{2} - (m_{1} + m_{2})^{2}][M^{2} - (m_{1} - m_{2})^{2}]}{4M^{2}}$$

 $E_{1,2}$ - center of mass energies:

$$E_1 = \frac{M^2 - m_2^2 + m_1^2}{2M}, \quad E_2 = \frac{M^2 - m_1^2 + m_2^2}{2M}$$

- Parameters of the model fixed from meson sector
- $q\bar{q}$ quasipotential

$$V(\mathbf{p}, \mathbf{q}; M) = \bar{u}_1(p)\bar{u}_2(-p) \left\{ \frac{4}{3} \alpha_S D_{\mu\nu}(\mathbf{k}) \gamma_1^{\mu} \gamma_2^{\nu} + V_{\text{conf}}^V(\mathbf{k}) \Gamma_1^{\mu} \Gamma_{2;\mu} + V_{\text{conf}}^S(\mathbf{k}) \right\} u_1(q) u_2(-q)$$

$$\begin{split} \mathbf{k} &= \mathbf{p} - \mathbf{q} \\ D_{\mu\nu}(\mathbf{k}) \text{ - (perturbative) gluon propagator} \\ \Gamma_{\mu}(\mathbf{k}) \text{ - effective long-range vertex with Pauli term:} \end{split}$$

$$\Gamma_{\mu}(\mathbf{k}) = \gamma_{\mu} + \frac{i\kappa}{2m} \sigma_{\mu\nu} k^{\nu},$$

 κ - anomalous chromomagnetic moment of quark,

$$u^{\lambda}(p) = \sqrt{\frac{\epsilon(p) + m}{2\epsilon(p)}} \left(\begin{array}{c} 1\\ \frac{\boldsymbol{\sigma}\mathbf{p}}{\epsilon(p) + m} \end{array} \right) \chi^{\lambda},$$

with $\epsilon(p) = \sqrt{\mathbf{p}^2 + m^2}$.

• Lorentz structure of $V_{
m conf} = V_{
m conf}^V + V_{
m conf}^S$

In nonrelativistic limit

$$\begin{cases} V_{\text{conf}}^V &= (1-\varepsilon)(Ar+B) \\ V_{\text{conf}}^S &= \varepsilon(Ar+B) \end{cases} \\ \end{cases} \quad \text{Sum}: \quad (Ar+B)$$

 ε - mixing parameter

Parameters A, B, κ , ε and quark masses fixed from analysis of meson masses and radiative decays:

 $\varepsilon = -1$ from heavy quarkonium radiative decays $(J/\psi \rightarrow \eta_c + \gamma)$ and HQET

 $\kappa = -1$ from fine splitting of heavy quarkonium ${}^{3}P_{J}$ states and HQET

 $(1 + \kappa) = 0 \implies$ vanishing long-range chromomagnetic interaction !

Freezing of α_s for light quarks (Simonov, Badalyan)

$$\alpha_s(\mu) = \frac{4\pi}{\beta_0 \ln \frac{\mu^2 + M_0^2}{\Lambda^2}}, \quad \beta_0 = 11 - \frac{2}{3}n_f, \quad \mu = \frac{2m_1m_2}{m_1 + m_2},$$

$$M_0 = 2.24\sqrt{A} = 0.95 \text{ GeV}$$

Quasipotential parameters:

 $A = 0.18 \text{ GeV}^2$, B = -0.30 GeV, $\Lambda = 0.413 \text{ GeV} (\text{from } M_{\rho})$

Quark masses:

 $m_b = 4.88 \text{ GeV}$ $m_s = 0.50 \text{ GeV}$ $m_c = 1.55 \text{ GeV}$ $m_{u.d} = 0.33 \text{ GeV}$ • Heavy tetraquarks in diquark-antidiquark picture

(Qq)-interaction:
$$V_{Qq} = \frac{1}{2} V_{Q\bar{q}}$$

 $V(\mathbf{p}, \mathbf{q}; M) = \bar{u}_1(p) \bar{u}_2(-p) \mathcal{V}(\mathbf{p}, \mathbf{q}; M) u_1(q) u_2(-q),$

where

$$\mathcal{V}(\mathbf{p},\mathbf{q};M) = \frac{2}{3}\alpha_S D_{\mu\nu}(\mathbf{k})\gamma_1^{\mu}\gamma_2^{\nu} + \frac{1}{2}V_{\text{conf}}^V(\mathbf{k})\Gamma_1^{\mu}\Gamma_{2;\mu} + \frac{1}{2}V_{\text{conf}}^S(\mathbf{k})$$

 $(d_1 \bar{d}_2)$ -interaction:

$$d = (Qq)$$

$$V(\mathbf{p}, \mathbf{q}; M) = \frac{\langle d_1(P) | J_\mu | d_1(Q) \rangle}{2\sqrt{E_{d_1} E_{d_1}}} \frac{4}{3} \alpha_S D^{\mu\nu}(\mathbf{k}) \frac{\langle d_2(P') | J_\nu | d_2(Q') \rangle}{2\sqrt{E_{d_2} E_{d_2}}} + \psi_{d_1}^*(P) \psi_{d_2}^*(P') \left[J_{d_1;\mu} J_{d_2}^{\mu} V_{\text{conf}}^V(\mathbf{k}) + V_{\text{conf}}^S(\mathbf{k}) \right] \psi_{d_1}(Q) \psi_{d_2}(Q'),$$

 $J_{d,\mu}$ – effective long-range vector vertex of diquark:

$$J_{d;\mu} = \begin{cases} \frac{(P+Q)_{\mu}}{2\sqrt{E_d E_d}} & \text{for scalar diquark} \\ -\frac{(P+Q)_{\mu}}{2\sqrt{E_d E_d}} + \frac{i\mu_d}{2M_d} \Sigma^{\nu}_{\mu} k_{\nu} & \text{for axial vector diquark} \\ (\mu_d = 0) \end{cases}$$

 μ_d - total chromomagnetic moment of axial vector diquark diquark spin matrix: $(\Sigma_{\rho\sigma})^{\nu}_{\mu} = -i(g_{\mu\rho}\delta^{\nu}_{\sigma} - g_{\mu\sigma}\delta^{\nu}_{\rho})$ \mathbf{S}_d - axial vector diquark spin: $(S_{d;k})_{il} = -i\varepsilon_{kil}$

 $\psi_d(P)$ – diquark wave function:

$$\psi_d(p) = \begin{cases} 1 & \text{for scalar diquark} \\ \varepsilon_d(p) & \text{for axial vector diquark} \end{cases}$$

 $\varepsilon_d(p)$ – polarization vector of axial vector diquark

 $\langle d(P)|J_{\mu}|d(Q)\rangle$ – vertex of diquark-gluon interaction:

$$\langle d(P)|J_{\mu}(0)|d(Q)\rangle = \int \frac{d^3p \, d^3q}{(2\pi)^6} \bar{\Psi}_P^d(\mathbf{p})\Gamma_{\mu}(\mathbf{p},\mathbf{q})\Psi_Q^d(\mathbf{q}) \Rightarrow F(k^2)$$

 Γ_{μ} – two-particle vertex function of the diquark-gluon interaction:

Figure 1: The vertex function Γ of the diquark-gluon interaction in the impulse approximation. The gluon interaction only with one quark is shown.

DIQUARKS

Table 1: Masses of light ground state diquarks (in MeV). S and A denotes scalar and axial vector diquarks antisymmetric [q, q'] and symmetric $\{q, q'\}$ in flavour, respectively.

Quark	Diquark	Mass					
content	type	our	Ebert et al.	Burden et al.	Maris	Hess et al.	
		RQM	NJL	BSE	BSE	Lattice	
[u,d]	S	710	705	737	820	694(22)	
$\{u,d\}$	А	909	875	949	1020	806(50)	
[u,s]	S	948	895	882	1100		
$\{u,s\}$	А	1069	1050	1050	1300		
$\{s,s\}$	А	1203	1215	1130	1440		

Table 2: Masses of heavy-light and doubly heavy diquarks (MeV).

Quark	Diquark	Mass				
content type		Q = c	Q = b			
[Q,q]	S	1973	5359			
$\{Q,q\}$	A	2036	5381			
[Q,s]	S	2091	5462			
$\{Q,s\}$	A	2158	5482			
[Q,c]	S		6519			
$\{Q,c\}$	A	3226	6526			
$\{Q,b\}$	A	6526	9778			

The form factors F(r) for the scalar [u, d] (solid line) and axial vector $\{u, d\}$ (dashed line) diquarks:

The form factors F(r) for $\{c, q\}$ (red line) and $\{b, q\}$ (blue line) axial vector diquarks.

HEAVY TETRAQUARKS

The potential of the heavy diquark-antidiquark interaction

$$\begin{split} V(r) &= V_{\text{Coul}}(r) + V_{\text{conf}}(r) + \frac{1}{2} \Biggl\{ \Biggl[\frac{1}{E_1(E_1 + M_1)} + \frac{1}{E_2(E_2 + M_2)} \Biggr] \frac{\hat{V}'_{\text{Coul}}(r)}{r} - \Biggl[\frac{1}{M_1(E_1 + M_1)} \\ &+ \frac{1}{M_2(E_2 + M_2)} \Biggr] \frac{V'_{\text{conf}}(r)}{r} + \frac{\mu_d}{2} \Biggl(\frac{1}{M_1^2} + \frac{1}{M_2^2} \Biggr) \frac{V'_{\text{conf}}(r)}{r} \Biggr\} \mathbf{L} \cdot (\mathbf{S}_1 + \mathbf{S}_2) \\ &+ \frac{1}{2} \Biggl\{ \Biggl[\frac{1}{E_1(E_1 + M_1)} - \frac{1}{E_2(E_2 + M_2)} \Biggr] \frac{\hat{V}'_{\text{Coul}}(r)}{r} - \Biggl[\frac{1}{M_1(E_1 + M_1)} - \frac{1}{M_2(E_2 + M_2)} \Biggr] \frac{V'_{\text{conf}}(r)}{r} \Biggr\} \\ &+ \frac{\mu_d}{2} \Biggl(\frac{1}{M_1^2} - \frac{1}{M_2^2} \Biggr) \frac{V'_{\text{conf}}(r)}{r} \Biggr\} \mathbf{L} \cdot (\mathbf{S}_1 - \mathbf{S}_2) + \frac{1}{E_1E_2} \Biggl\{ \mathbf{p} \left[V_{\text{Coul}}(r) + V_{\text{conf}}^V(r) \right] \mathbf{p} - \frac{1}{4} \Delta V_{\text{conf}}^V(r) \\ &+ V'_{\text{Coul}}(r) \frac{\mathbf{L}^2}{2r} + \frac{1}{r} \Biggl[V'_{\text{Coul}}(r) + \frac{\mu_d}{4} \Biggl(\frac{E_1}{M_1} + \frac{E_2}{M_2} \Biggr) V'_{\text{conf}}^V(r) \Biggr] \mathbf{L} (\mathbf{S}_1 + \mathbf{S}_2) \\ &+ \frac{1}{3} \Biggl[\frac{1}{r} V'_{\text{Coul}}(r) - V''_{\text{Coul}}(r) + \frac{\mu_d^2}{4} \frac{E_1E_2}{M_1M_2} \Biggl(\frac{1}{r} V'_{\text{conf}}^V(r) - V''_{\text{conf}}(r) \Biggr) \Biggr] \Biggl[\frac{3}{r^2} (\mathbf{S}_1 \mathbf{r}) (\mathbf{S}_2 \mathbf{r}) - \mathbf{S}_1 \mathbf{S}_2 \Biggr] \\ &+ \frac{\mu_d}{4} \Biggl(\frac{E_1}{M_1} - \frac{E_2}{M_2} \Biggr) \frac{V'_{\text{conf}}(r)}{r} \mathbf{L} (\mathbf{S}_1 - \mathbf{S}_2) + \frac{2}{3} \Biggl[\Delta V_{\text{Coul}}(r) + \frac{\mu_d^2}{4} \frac{E_1E_2}{M_1M_2} \Delta V_{\text{conf}}^V(r) \Biggr] \mathbf{S}_1 \mathbf{S}_2 \Biggr\}, \end{split}$$

where

$$V_{\text{Coul}}(r) = -\frac{4}{3}\alpha_s \frac{F_1(r)F_2(r)}{r}$$

The diquark-antidiquark model of heavy tetraquarks predicts existence of the SU(3) nonet of states with hidden charm or beauty (Q = c, b):

• four tetraquarks ($[Qq][\bar{Q}\bar{q}]$, q = u, d) with neither open nor hidden strangeness, which have electric charges 0 or ± 1 and isospin 0 or 1

• four tetraquarks ($[Qs][\bar{Q}\bar{q}]$ and $[Qq][\bar{Q}\bar{s}]$, q = u, d) with open strangeness ($S = \pm 1$), which have electric charges 0 or ± 1 and isospin $\frac{1}{2}$

• one tetraquark $([Qs][\bar{Q}\bar{s}])$ with hidden strangeness and zero electric charge.

In our model we neglect the mass difference of u and d quarks and electromagnetic interactions – thus corresponding tetraquarks will be degenerate in mass. More detailed analysis predicts that such mass differences can be of few MeV.

The (non)observation of such states will be a crucial test of the tetraquark model.

Table 3:	Masses of hidden charm tetraquark states (in MeV).							
State	Diquark		Tetraquark mass					
J^{PC}	content	$cqar{c}ar{q}$	$csar{c}ar{s}$	$csar{c}ar{q}/cqar{c}ar{s}$				
1S								
0^{++}	$Sar{S}$	3812	4051	3922				
$1^{+\pm}$	$(S\bar{A}\pm\bar{S}A)/\sqrt{2}$	3871	4113	3982				
0^{++}	$Aar{A}$	3852	4110	3967				
1^{+-}	$Aar{A}$	3890	4143	4004				
2^{++}	$Aar{A}$	3968	4209	4080				
1P								
$1^{}$	$Sar{S}$	4244	4466	4350				

Table 3: Masses of hidden charm tetraquark states (in MeV).

Table 4: Thresholds for open charm decays and nearby hidden-charm thresholds.

Channel	Threshold (MeV)	Channel	Threshold (MeV)	Channel	Threshold (MeV)
$D^0 ar{D}^0$	3729.4	$D_s^+ D_s^-$	3936.2	$D^0 D_s^{\pm}$	3832.9
D^+D^-	3738.8	$\eta' J/\psi$	4054.7	$D^{\pm}D_s^{\mp}$	3837.7
$D^0 ar{D}^{*0}$	3871.3	$D_s^{\pm} D_s^{*\mp}$	4080.0	$D^{*0}D_s^{\pm}$	3975.0
$ ho J/\psi$	3872.7	$\phi J/\psi$	4116.4	$D^0 D_s^{*\pm}$	3976.7
$D^{\pm}D^{*\mp}$	3879.5	$D_{s}^{*+}D_{s}^{*-}$	4223.8	$K^{*\pm}J/\psi$	3988.6
$\omega J/\psi$	3879.6			$K^{*0}J/\psi$	3993.0
$D^{*0}\bar{D}^{*0}$	4013.6			$D^{*0}D_s^{*\pm}$	4118.8

				()		
State	Diquark	Tetraquark mass				
J^{PC}	content	$bqar{b}ar{q}$	$bsar{b}ar{s}$	$bsar{b}ar{q}/bqar{b}ar{s}$		
1S						
0^{++}	$Sar{S}$	10471	10662	10572		
$1^{+\pm}$	$(S\bar{A}\pm\bar{S}A)/\sqrt{2}$	10492	10682	10593		
0^{++}	$Aar{A}$	10473	10671	10584		
1^{+-}	$Aar{A}$	10494	10686	10599		
2^{++}	$Aar{A}$	10534	10716	10628		
1P						
$1^{}$	$Sar{S}$	10807	11002	10907		

Table 5: Masses of hidden bottom tetraquark states (in MeV).

Table 6: Thresholds for open bottom decays.

Channel	Threshold (MeV)	Channel	Threshold (MeV)	Channel	Threshold (MeV)
$B\bar{B}$	10558	$B_s^+B_s^-$	10739	BB_s	10649
$B\bar{B}^{*}$	10604	$B_s^{\pm}B_s^{*\mp}$	10786	B^*B_s	10695
$B^*\bar{B}^*$	10650	$B_{s}^{*+}B_{s}^{*-}$	10833	$B^*B^*_s$	10742

State	Diquark		Theory			Ex	periment
J^{PC}	content	EFG	Maiani	Maiani $(csar car s)$		state	mass
1S							
0^{++}	$Sar{S}$	3812	3723				
1^{++}	$(S\bar{A} + \bar{S}A)/\sqrt{2}$	3871	3872 [†]		{	X(3872) X(3876)	$\begin{cases} 3871.4 \pm 0.6 \\ 3875.2 \pm 0.7^{+0.9} \end{cases}$
1^{+-}	$(S\bar{A} - \bar{S}A)/\sqrt{2}$	3871	3754		C	(0010)	(-1.8)
0^{++}	$Aar{A}$	3852	3832				
1^{+-}	$Aar{A}$	3890	3882				$(20/2 \pm 11 \pm 12)$
2^{++}	$Aar{A}$	3968	3952			Y(3943)	$\begin{cases} 3943 \pm 11 \pm 13 \\ 3914.3^{+4.1}_{-3.8} \end{cases}$
1P	_						$(4259 + 8^{+2})$
1	SS	4244		4330±70		Y(4260)	$\begin{cases} 1203 \pm 0_{-6} \\ 4247 \pm 12^{+17} \\ 12^{-1$
1^{-}	$S\bar{S}$	4244)				Z(4248)	$4248^{+44+180}$
0^{-}	$(SA \pm SA)/\sqrt{2}$	4267 J				2(1210)	-29-35
$1^{}$ $1^{}$	$(SA - SA)/\sqrt{2}$	$\left. \begin{array}{c} 4284 \\ 4277 \end{array} \right\}$				Y(4260)	$4284_{-16}^{+17}\pm4$
1 — —	$A\overline{A}$	4211)				V(1260)	$\int 4361 \pm 9 \pm 9$
	АА	4330				1 (4300)	1324 ± 24
$2S_{1+}$	$(\overline{a}\overline{A} + \overline{a}A)/\sqrt{2}$	1491)					
1, $0+$	$(SA \pm SA)/\sqrt{2}$	4431				Z(4430)	4433±4±2
0^+ 1^+	AA	4454 J					
1 2D	AA	4401	\sim 4470				
$1^{}$	$Sar{S}$	4666			{	Y(4660) X(4630)	$\begin{cases} 4664 \pm 11 \pm 5 \\ 4634^{+8+5}_{-7-8} \end{cases}$

Table 7: Masses of charm diquark-antidiquark states $cq\bar{c}\bar{q}$ (in MeV).

SUMMARY

• Masses of heavy tetraquarks with hidden and open charm and bottom are calculated in the diquark-antidiquark picture.

• Dynamical approach based on the relativistic quark model is used, where both diquark and tetraquark masses are obtained by numerical solution of the quasipotential equation with the corresponding relativistic potentials.

• The diquark size is taken into account with the help of the diquark-gluon form factor in terms of diquark wave functions.

• No free adjustable parameters are introduced.

• X(3872) can be the 1⁺⁺ neutral charm tetraquark state. If it is really a tetraquark, one more neutral and two charged tetraquark states should exist with close masses.

- Y(4260), Y(4360) and Y(4660) can be the 1^{--} P-wave tetraquark states.
- Charged Z(4433) can be the 1^+ or 0^+ 2S-wave tetraquark state.
- Charged Z(4248) can be the 1^- or $0^- 1P$ -wave tetraquark state.

• The ground states of tetraquarks with hidden bottom are predicted to have masses below the open bottom threshold and thus should be narrow.