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1. The di-electron width as an important test of

the nature of a resonance.

Knowledge of the di-electron widths of higher charmonium states is
important for many reasons.

It can help to distinguish between conventional cc̄ mesons and, for
example, tetraquarks, which have much smaller di-electron widths
than four-quark systems, e.g. cc̄qq̄, with JPC = 1−− have Γee by
∼ 100 times smaller than Γee(cc̄).

This effect occurs because the probability to collect four (and even
three) particles at the origin is much smaller than for two particles.
(This fact does not exclude that at larger distances the continuum
part can give an essential contribution to the w.f. and even
dominates asymptotically). Therefore the w.f. at the origin of a
higher vector resonance can be calculated taking into account the



mixing between neighbouring vector states.

Study of the charmonium spectrum shows that the (n + 1) 3S1 and
n 3D1 states (n ≥ 3) have small mass differences, ≤ 50 MeV, which
decrease for higher radial excitations.

On the other hand, the mass differences between neighbouring
n 3S1 states are of the order several hundreds of MeV, so in first
approximation mixing between these states can be neglected.

The S–D mixing between ψ′(3686) and ψ′′(3770) is not large:
θ = (12± 2)◦ has been extracted from the ratio of their di-electron
widths.

We show that for higher vector states the S–D mixing is
significantly larger and the mixing angle θ ∼ 34◦.



2. Experimental facts as the arguments in favor of

the S −D mixing

Meson dominant state Γee(exp) (keV):

J/ψ 1 3S1 5.55± 0.16

ψ ′ 2 3S1 2.48± 0.06

ψ(3770) 13D1 0.24± 0.03

ψ(4040) 3 3S1 0.86± 0.07

ψ(4159) 23D1 0.83± 0.07

ψ(4415) 4 3S1 0.58± 0.07

In the recent paper of DZY the Y (4660) resonance is considered as a
5 3S1 state with large Γee(5 3S1) = 1.34 keV, which is even
significantly larger than Γee(ψ(4415)) = 0.58(7) keV.



1. The measured di-electron width of ψ(4160), which is usually
considered as the 2 3D1 state, is large,

Γee(ψ(4160)) = 0.83± 0.06 keV,

It is only 5–10% smaller than Γeeof ψ(4040) and ∼14 times larger
than the width for a pure 2 3D1 state: Γee(2 3D1) = 0.061 keV. It
is also even three times larger than Γee(ψ′′(3770)) = 0.24(3) keV.

2. On the contrary,

Γee(ψ(4040))|exp = 0.86± 0.07 keV,

appears to be almost two times smaller than for a pure 3 3S1

state. This situation can be resolved if the S–D mixing between
these two states is taken into account. This mixing can occur due
to an influence of open channel, while a mixing owing to the
short-range tensor forces gives a rather small effect.



3. The di-electron width of ψ(4415). If this resonance is considered
as the 4 3S1 state, then the best potential models calculations
give Γee ∼ 1.1− 1.5 keV which is two-three times larger than the
experimental number,

Γee(ψ(4415)) = 0.58± 0.07 keV.

Again such a decrease of the di-electron width could occur via
4S − 3D mixing. In our calculations without hadronic shifts
M(3D) = 4.470(20) MeV, while M(4S) = 4410(20) MeV, i.e.,
these two masses are rather close to the masses of the physical
resonances ψ(4415) and Y (4360). These 4 3S1 and 3 3D1 states
could be strongly coupled to the S-wave decay channels, like
D1(2420)D∗(2010), D∗

0(2400)D∗(2010), and D∗
s0(2317) D∗

s(2112),
and due to this coupling the 4 3S1 and 3 3D1 levels aquire
hadronic downward mass shifts, which are typically ∼ 40–60



MeV (PW paper).

4. It is convenient to define the mixing angle between higher vector
states from the ratio of the di-electron widths, as for ψ(3686) and
ψ(3770) when not well known factors, like the QCD radiative
corrections, are cancelled.

5. The mass of the 5 3S1 state, M(5 3S1) = 4650(20) MeV, was
predicted in BB paper, before the Belle resonance Y (4660) was
discovered. If this resonance is apure 5 3S1 state DZY give
Γee(Y (4660)) = 1.34 keV; in our calculations Γ(Y (4660)) = 0.70
keV, due to our choice of potential. And about two times
smaller, Γee(Y (4660)) = 0.31 keV, if the mixing angle between
5 3S1 and the unobserved 4 3D1 state (with mass ∼ 4700 MeV) is
34◦, (the same as for ψ(4415) and ψ̃(3D)).



3. The masses of the JPC = 1−− charmonium states

The hyperfine (HF) and fine-structure splittings of higher radial
excitations are small (≤ 20 MeV), therefore their masses practically
coincide with the centroid masses, Mcog(nL). To calculate them we
use the relativistic string Hamiltonian (RSH) with universal (for all
mesons) interaction.

For RSH in heavy quarkonia the mass Mcog(nL) is just given by the
e.v. of the spinless Salpeter equation (SSE):

{
2
√

p2 + m2
c + VB(r)

}
ψnL(r) = Mcog(nL)ψnL(r).



We also use the RS Hamiltonian, written in einbein approximation
(EA), when the spin-averaged mass is presented as:

Mcog(nL) = ωnL +
m2

c

ωnL
+ EnL(ωc),

The self-energy correction ∆SE(cc̄) ∼= −20 MeV can be included in
the definition of the pole of c quark.

The e.v. EnL are the solutions of the so-called einbein equation:
[

~p2

ωnL
+ VB(r)

]
ϕnL(r) = EnLϕnL,

defined together with the dynamical mass ωnL in a selfconsistent way:

ω2
nL = m2

c −
∂EnL

∂ωnL
.



For the n 3D1 states we take M(n 3D1) = Mcog(nD), while for the
n 3S1 states M(n 3S1) = Mcog(nS) + 1

4δHF(nS) with
δHF(nS) = M(n 3S1)−M(n1S0). The values of δHF(nS) = 48(48),
16(20), 12(16), 6(10) MeV (n = 2, 3, 4, 5), are calculated in BGS, BB
papers.

The universal potential VB(r) is taken from the background
perturbation theory:

VB(r) = σ(r) · r − 4
3

αB(r)
r

,

where the vector coupling αB(r) it has the asymptotic freedom
behavior at small r, freezes (saturates) at large r, and depends on the
number of flavors nf (for charmonium nf = 4).

For low-lying states with r.m.s R(nL) ≤ 0.8 fm a linear confining
potential with constant string tension, σ = σ0

∼= 0.18 GeV2, is used.
However, for higher states, which lie above open thresholds and have



sizes R(nL) ≥ 1.0 fm, it is important to take into account the
creation of virtual light-quark pairs (qq̄). It can be done even in
single-channel approximation. Due to virtual loops the surface inside
the Wilson loop decreases, making the string tension dependent on

σ(r) = σ0(1− γf(r)), γ = 0.40, σ0 = 0.18 GeV2

f(r → 0) = 0, f(r →∞) = 1.0.

Such a flattening of the confining potential is common to all mesons
of large sizes and therefore for charmoium the parameters of σ(r) can
be taken from the analysis of the radial Regge trajectories for light
mesons (BBS, 2002).



Table 1. The charmonium masses M(n 3S1) (in MeV) (mc = 1.42
GeV, σ0 = 0.18 GeV2)

state SSE σ(r) EA σ(r) EA, σ0 = const exp.

1S 3100 3095 3100 3097

2S 3686 3682 3690 3686

3S 4075 4096 4116 4039(1)

4S 4398 4426 4470 4421(4)

4361(18)

5S 4642 4672 4784 4664(16)

6S 4804 4828 5070

7S 4950 4980 5375



Table 2. The charmonium masses M(n 3D1) (in MeV) (mc = 1.42
GeV, σ0 = 0.18 GeV2

state SSE, σ(r) EAσ(r) EA, σ0 = const Exp.

1D 3800 3779 3789 3770(3) PDG

2D 4165 4165 4288 4159(3)PDG

3D 4465 4477 4523 4421 PDG

4361, 4324

Belle, BaBar

4D 4690 4707 4825 4664(16) Belle

4634(14) Belle

5D 4840 4855 5100

6D 4975 5005 5407



Our analysis shows that the mass difference,

∆nM = M(n 3D1)−M((n + 1) 3S1),

decreases from the value ∆2M(exp) = 120 MeV for n = 2 up to ∼ 30
MeV for n = 4. Therefore higher levels are almost degenerate and for
them the S–D mixing is probable. Also in single-channel
approximation the Mcog(n + 1)S Mcog(nD). Could this order be
changed due to hadronic shifts?

However, our mass of the 3 3S1 level is ∼ 40 MeV larger than the
experimental one, because this level can be affected by open D∗D̄∗

channel and DC shift ∼ 40 MeV is usually estimated.



4. Di-electron widths

The di-electron width is expressed via vector decay constant,
containing the relativistic correction ξV , and includes QCD radiative
corrections, known in one-loop approximation, which enters as the
multiplicative factor denoted here as βV = 1− 16

3π αs(MV ): Then

Γee(n 3S1) =
4πe2

cα
2

3MnS
f2

nSβ =
4e2

cα
2

M2
nS

|RnS(0)|2ξnSβV ,

Γee(n 3D1) =
4πe2

cα
2

3MnD
f2

nDβ =
4e2

cα
2

M2
nD

|RnD(0)|2ξnDβV .

The w.f. at the origin RnD(0) is defined

RnD(0) =
5

2
√

2ω2
nD

R′′nD(0).

and the average kinetic energy ωnL = 〈
√

p2 + m2
c〉nL, plays the role



of a constituent quark mass, different for different nL states.
ωnL ∼ 1.65 GeV for n ≥ 5.

The w.f. at the origin RnS(0), RnD(0), and R′′nD(0) are of pure nS

and nD states are calculated with the use of RSH. The w.f. of the
physical ψ mesons are denoted as ϕnS(0) and ϕnD(0), where the
symbols nS and nD simply remind about the origin of those states:

ϕnS(0) = cos θnRnS(0)− sin θnR(n−1)D(0),

ϕnD(0) = cos θnR(n+1)S(0)− sin θnRnD(0). (1)

The mixing angle is a fitting parameter



Table 3. The wave functions at the origin ϕ(n+1)S(0) and ϕnD(0)
(in GeV3/2) of the physical states for n = 1, 2, 3, 4 a).

n 1 2 3 4

θ 11◦ 34.8◦ 34◦ 34◦

ϕ(n+1)S(0) 0.735 0.511 0.459 0.360

ϕnD(0) 0.240 0.516 0.491 0.416

The vector decay constants, calculated without S −D mixing (θ = 0)
and with θ 6= 0 are given in Table 4.



Table 4. The decay constants fV (n 3S1) (in MeV), calculated
without and with S–D mixing.

θ = 0

n = 1 n = 2 n = 3

fV ((n + 1) 3S1) 373 329 288

fV (n 3D1) 45 60 66

θ 6= 0

θ 11◦ 34.8◦ 34◦

fV (ψS) 357 236 202

fV (ψD) 115 234 217

For large S–D mixing all decay constants ∼ 220± 20 MeV and have
close values of di-electron widths of the (n + 1)S and nD states.



A. 3 3S1–2 3D1 mixing

The mixing angle between the (n + 1) 3S1 and n 3D1 states, denoted
here as θn, can be calculated if at least one of the di-electron widths
is known from experiment. For the 3S and 2D states both di-electron
widths are known and θ2 is easily determined.

Notice that for a pure 2 3D1 state the di-electron width is very small:
Γee(2 3D1)=0.059 keV, i.e., ∼ 14 times smaller than the experimental
number for ψ(4160) and one can expect large mixing between the
3 3S1 and 2 3D1 states. Such a large mixing can occur via the
nearby open D∗D̄∗ channel and partly through short-ranged tensor
forces, which, however, do not provide a large mixing angle,
θ(tensor)<∼ 7◦. From the ratio:

η =
Γee(ψ(4040))
Γee(ψ(4160))

= 1.04± 0.17



one obtains two solutions with a large magnitude of θ2: a positive
and a negative one:

θ2 = 34.8◦ or θ2 = −55.7◦.

For these angles from (1) the physical w.f. ϕ(ψ(4040), r = 0) = 0.511
GeV3/2 and ϕ(ψ(4160), r = 0) = 0.516 GeV3/2 appear to be almost
equal. Then from (3) and (3) with βV = 0.63 one calculates following
di-electron widths:

Γee(ψ(4040))|th = 0.87 keV, Γee(ψ(4160))|th = 0.83 keV,

Γee(exp) = 0.86± 0.07 keV, Γee((exp) = 0.83± 0.06 keV,

which just coincide with the central values of experimental numbers.
The QCD factor β = 0.63, extracted from the absolute value,
corresponds to the strong coupling αs(MV ) = 0.217. This value of
βV = 0.63, is also used for higher excitations (n = 3, 4).



B. Large mixing between 4 3S1 and 3 3D1 states

In PM two vector states, 4 3S1 and 3 3D1, are expected in the mass
region around 4.4 GeV. Our calculations give M(4 3S1) ∼ 4.42 GeV
and M(3 3D1) ∼ 4.47(1) GeV with ∆(M) ∼ 50 MeV. Due to strong
coupling to the D∗D1(2420) and D∗D∗

2(2460) channels the 4 3S1 and
3 3D1 states can be mixed and the mass of one or probably both
states is shifted down: then one of these mixed (physical) states can
be identified with ψ(4415) and the other one with the Belle resonance
Y (4360).

At present from experiment only the Γee(ψ(4415)) = 0.58± 0.07 keV,
is known, while for the Y (4360) resonance two possible numbers are
measured for the following product:

B(Y (4360) → ψ(2S)π+π−) Γee(Y (4360)) =
a) 10.4± 3.2 eV,

b) 11.8± 3.2 eV.



For pure 4S and 3D states (θ3 = 0) with the w.f. at the origin
R4S(0) = 0.655 GeV3/2 and R3D(0) = 0.150 GeV3/2:

Γee(4 3S1) = 1.19 keV, Γee(3 3D1) = 0.06 keV, (θ = 0).

while Γee(ψ(4415))|exp = 0.58± 0.07 keV i.e., Γee(4S) is two times
larger than the experimental number and Γee(3D) is very small. To
reach agreement with experiment for ψ(4415) one needs take a large
mixing angle, θ3 = 34◦ (the same as for the 3S–2D mixing), then

Γee(ψ(4415))|theory = 0.57 keV

in agreement with experimental value.



For the same θ = 34o the di-electron width of second physical state,
denoted as ψ̃(4470) is:

Γee(ψ̃(4470)) = 0.63 keV,

we take βV = 0.63 as for the 3S and 2D states, i.e. the di-electron
widths coincide within 10% accuracy, and in the single-channel
approximation it is difficult to conclude which of these states should
be identified with the ψ(4415) meson or with the Y (4360) resonance.
From experimental product BΓee and the di-electron width one can
obtain an estimate of the branching B(Y (4360) → ψ(2S)π+π−),

B(Y (4360) → ψ(2S)π+π−) ≈ (1.6± 0.6)%,



C. The Y (4660), Y (4815)

The Belle resonance Y (4660) (2007) observed in e+e− → ψ(2S)π+π−

with M = 4660± 16 MeV, and recently discovered Y (4634) in
e+e− → Λ+

c Λ−c with M = 4634 + (1315) MeV and Γ = 92+500
−45 MeV can

be considered as the same resonance. Its mass is close to the S-wave
threshold D∗

sDs1(2535) (Mth = 4647 MeV) and the P -wave threshold
D(2 3S1)D̄∗ with Mth = 4647 MeV (our calculations give
M(D(2 3S1)) ≈ 2640 MeV ). In single-channel approximation

M(5 3S1) = 4655(15th) MeV, M(4 3D1) = 4700(15th) MeV.

These masses differ by only ∼ 50 MeV and large S −D mixing
between two states can be expected. Unfortunately, at present their
di-electron widths remain unknown, and we give their numbers with
QCD factor βV = 0.63 as for 4S and 3D states. For pure 5S and 4D



states (θ4 = 0)

Γee(5 3S1) = 0.73 keV, Γee(4 3D1) = 0.055 keV (θ4 = 0),

i.e., Γee(5S) would be larger than Γee(4S), on the contrary, Γee(4D)
is very small.

For large S–D mixing with θ4 = 34◦ (as θ2 and θ3) we obtain two
times smaller number:

Γee(ψ̃(4660)) = 0.32 keV (θ4 = 34◦).

Then second physical state, denoted as ψ̃(4690), has

Γee(ψ̃(4690)) = 0.45 keV (θ4 = 34◦),

which is eight times larger than for the pure 4D state in (3) and even
larger than Γee(ψ̃(4660)). Equal widths Γee are obtained for θ4 = 30◦:

Γee(ψ̃(4660)) = Γee(ψ̃(4690)) = 0.39 keV.



D. The 6 3S1 state. It has very large r.m.s., R ∼= 2.5 fm, even
in closed-channel approximation. Still light mesons of such large
size, e.g. ρ(4S), exist. Its has M(6 3S1) = 4815± 15 MeV and
Γee(6 3S1) = 0.20 keV for θ5 = 34◦. The observation of so high a
resonance would be important for the theory.



For characteristic angle θ = 300 our predictions are

Γee(5 3S1) = 0.40 keV, M(53S1) = 4.66 GeV

Γee(4 3D1) = 0.40 keV, M(43D1) = 4.69 GeV

Γee(6 3S1) = 0.26 keV, Γee(5 3D1) = 0.30 keV !

M(63S1) = 4.815 GeV, M(53D1) = 4.84 GeV

There is no other way to have large Γee for ψ(2D) ( Γee = 0.83± 0.07
keV), as with θ ≈ 300.



Conclusions

Our study of the di-electron widths of higher n 3S1 and n 3D1 radial
excitations in charmonium shows that:

1. The almost equal values of Γee(4040) and Γee(4160), as well as
the small value of Γee(4415), can be explained, if large S–D

mixing between (n + 1) 3S1 and n 3D1 states takes place.

2. For ψ(4040) and ψ(4160) precise agreement with experiment is
obtained taking the mixing angle θ2 = 34.8◦.

3. For ψ(4415) the calculated di-electron width coincides with the
central value determined by experiment for a mixing angle
θ3 = 34◦.

4. In all cases the QCD radiative corrections appear to be
important and the same strong coupling αs(MV ) = 0.217 is
taken, giving ∼ 30% effect.



5. The DC (decay channel) mass shifts (due to strong coupling to a
nearby threshold) are not calculated here . Therefore it remains
unclear which physical resonance, ψ(4415) or the Belle resonance
Y (4360), corresponds to the 3 3D1(4 3S1) state. For both states
we predict close values of their di-electron widths:
Γee(ψ(4415)) = 0.57 keV and Γee(Y (4360)) ∼= 0.63(7)keV (they
coincide within the experimental error).

6. Assuming that the 5 3S1 and 4 3D1 states have also large S–D

mixing, with θn = (32± 2)◦), we obtain:Γee(ψ̃(4660)) = 0.35(4)
keV, Γee(ψ̃(4690)) = 0.40(5) keV.

7. One cannot exclude that 6 3S1 state also exists, for which
M(6S) = 4815(15) MeV and the di-electron width Γee = 0.20
keV are predicted.


