The Pion-Quarkonia interaction

Yu.A.Simonov

Institute of Theoretical and Experimental Physics, Moscow, Russia

PANDA Meeting, 22 October, ITEP

Contents

- 1. Introduction. The Quest for new strong interaction.
- 2. Microscopic: Quark-pion and decay effective Lagrangians from QCD.
- 3. Decay amplitudes vs experiment.
- 4. Dipion transitions.
- 5. Single eta transitions.
- 6. Program for future: new $(Q\bar{Q})$ and $(Q\bar{Q}\pi)$ states in the general channel Coupling Scheme.
- 7. Conclusions.

1. Introduction. The Quest for new strong interaction.

a) Strong coupling of $Q\bar{Q}$ to $(Q\bar{q})(q\bar{Q})$:

 $\Gamma(\psi(3770) \rightarrow D\bar{D}) = 23 \text{ MeV}, \quad \Delta E = 30 \div 40 \text{ MeV}$

p-wave !

$$\Gamma(\psi(4S) \to B\bar{B}) = 20 \text{ MeV}, \quad \Delta E = 20 \text{ MeV}$$

 $p - \text{wave } !$

b) Strong coupling to pions:

pion-quarkonium resonances: Z(4430) in $\pi^{\pm}\psi(2S)$ with $\Gamma = 45^{+35}_{-18}$ MeV

in $B \to KZ^{\pm}(4430)$

Z(4051) and Z(4248) in $\pi \chi_{c1}$ with $\Gamma = 82$ MeV and $\Gamma = 177$ MeV. c) Eta transitions strong; however SU(3) violation

$$\psi(2S) \to J/\psi\eta, \quad B = 3.09\%$$

 $\Upsilon(4S) \to \Upsilon(1S)\eta, \quad \Gamma = 4 \quad \text{keV}$

d) Systems $J/\psi \pi^+\pi^-$, $\Upsilon(nS)\pi^+\pi^-$ show up as resonances.

		Ta	able 1:		
state	$M~({ m MeV})$	$\Gamma ~({ m MeV})$	J^{PC}	Decay Modes	Production Modes
$\overline{Y_s(2175)}$	2175 ± 8	58 ± 26	1	$\phi f_0(980)$	e^+e^- (ISR), J/ψ deca
X(3872)	3871.4 ± 0.6	< 2.3	1^{++}	$\pi^+\pi^- J/\psi, \gamma J/\psi$	$B \to KX(3872), p\bar{p}$
X(3875)	3875.5 ± 1.5	$3.0^{+2.1}_{-1.7}$		$D^0 ar{D^0} \pi^0$	$B \to KX(3875)$
Z(3940)	3929 ± 5	29 ± 10	2^{++}	$Dar{D}$	$\gamma\gamma$
X(3940)	3942 ± 9	37 ± 17	J^{P+}	$D\bar{D^*}$	$e^+e^- \rightarrow J/\psi X(3940$
Y(3940)	3943 ± 17	87 ± 34	J^{P+}	$\omega J/\psi$	$B \to KY(3940)$
Y(4008)	4008^{+82}_{-49}	226^{+97}_{-80}	1	$\pi^+\pi^- J/\psi$	$e^+e^-(ISR)$
X(4160)	4156 ± 29	139^{+113}_{-65}	J^{P+}	$D^* \bar{D^*}$	$e^+e^- \rightarrow J/\psi X(4160$
Y(4260)	4264 ± 12	83 ± 22	$1^{}$	$\pi^+\pi^- J/\psi$	$e^+e^-(\text{ISR})$
Y(4350)	4361 ± 13	74 ± 18	$1^{}$	$\pi^+\pi^-\psi'$	$e^+e^-(ISR)$
Z(4430)	4433 ± 5	45^{+35}_{-18}	?	$\pi^{\pm}\psi'$	$B \to KZ^{\pm}(4430)$
Y(4660)	4664 ± 12	48 ± 15	$1^{}$	$\pi^+\pi^-\psi^\prime$	$e^+e^-(ISR)$
Y_b	$\sim 10,870$?	1	$\pi^+\pi^-\Upsilon(nS)$	e^+e^-

2. Microscopic: Quark-pion and decay effective Lagrangians from QCD.

a) Quark-pion Lagrangian

For light quarks of 3 flavors, f = u, d, s and octet of PS mesons one can derive effective Lagrangian (Yu.S.PRD (2002)).

$$S_{q\pi} = -i \int \bar{\psi}^f(x) M(x) \hat{U}^{fg}(x) \psi^g(x) \tag{1}$$

where $M(x) \to M(0) = M_{br}$ is effective mass operator, and

$$\hat{U} = \exp\left(i\gamma_5 \frac{\lambda^a \varphi_a(x)}{f_\pi}\right);$$

$$\varphi_a \lambda_a = \sqrt{2} \begin{pmatrix} \frac{\eta}{\sqrt{6}} + \frac{\pi^0}{\sqrt{2}}, & \pi^+, & k^+ \\ \pi^-, & \frac{\eta}{\sqrt{6}} - \frac{\pi^0}{\sqrt{2}}, & k^0 \\ k^-, & \bar{k}^0, & -\frac{2\eta}{\sqrt{6}} \end{pmatrix}$$
(2)

One can show, that $M_{br} = M(0) \approx f_{\pi} = 93$ MeV.

Interaction (30) produces $(q\bar{q}\pi)$ decay vertices.

Fig.1 in addition to confinement without pions $(\hat{U} \equiv 1)$

 $M(x \rightarrow \text{large}) = \sigma |x|$ Using (30) one find $\pi\pi$ vertex

$$W_2(\varphi) = -\frac{N_c}{2} tr(iSM\varphi^2 + SM\gamma_5\varphi S\gamma_5 M\varphi).$$
(3)

these diagrams cancel when $k_i \to 0$, and $m_{\pi} \to 0$ (Adler zero)

$$W_2(\varphi) = \frac{1}{2} \int \frac{d^4k_1}{(2\pi)^4} \frac{d^4k_2}{(2\pi)^4} \phi_a(k_1) N(k_1, k_2) \phi_a(k_2) \tag{4}$$

$$N(k_1, k_2) = \frac{m_\pi^2}{4N_c} + O(k_1k_2)$$

$$f^2 = \frac{m_q}{4N_c} / t_{m_q} /$$

and $m_{\pi} f_{\pi}^2 = -\frac{m_q}{2N_c} \langle tr \psi \bar{\psi} \rangle.$

One can insert now $W_2(\phi)$ inside heavy quark loop

and again require Adler zero.

Hence one has one parameter $M_{br} \approx f_{\pi}$ for $\pi q \bar{q}$ vertex.

b) Decay Lagrangian

In Fig.2 a on the left is vertex M_{br} . What it is on the r.h.s?

It is the time-turning trajectory (ttt) which is possible only when confinement is working

One can effective replace ttt by the vertex. $\bar{q}M_{\omega}q$, so that the effective decay Lagrangian

$$L_{ttt} = -i \int d^4x \bar{\psi}(x) M_\omega \psi(x).$$

One can show, that $M_{\omega} \approx 2\omega \sim 1$ GeV where ω is average energy of q inside D or B meson.

The total Lagrangian for a light $q\bar{q}$ creation with (or without) pions

$$L_{total} = -i \int d^4 x \bar{\psi}(x) (M_{br} e^{i\gamma_5 p} + M_\omega) \psi(x).$$

Note, that $M_{\omega} \gg M_{br}$, hence we keep only M_{ω} when no pions.

3. Decay amplitudes vs experiment.

Parameter M_{ω} is of basic importance: it couples all channels incognito, but shows up in decays.

Also it is large, $M_{\omega} \approx 1$ GeV.

We must check, how it explains decays

 $\Gamma(\Upsilon(4S) \to B\bar{B})$ $\Gamma(\Upsilon(5S) \to B\bar{B}, B\bar{B}^* + c.c., B^*\bar{B}^*, B_s\bar{B}_s, ...)$ $\Gamma(\psi(3770) \to D\bar{D}).$

The width Γ_n of the (nS) state is

$$\Gamma_n = \gamma \frac{p_k \tilde{M}_k}{4\pi^2} \int d\Omega_{\mathbf{p}} |J_{nn_2n_3}(\mathbf{p})|^2 \tag{5}$$

Here $\gamma = \frac{M_{\omega}^2}{N_c}$ and normalization factor (all traces of Dirac matrices) $y_{123} = \frac{Z_{123x}}{\sqrt{z_1 z_2 z_3}}$. k - is the decay channel.

 $J_{nn_2n_3}(\mathbf{p})$ is the overlap integral

$$J_{n_1n_2n_3}(\mathbf{p}) = \bar{y}_{123} \int d^3(\mathbf{v} - \mathbf{u}) d^3(\mathbf{x} - \mathbf{u}) e^{i\mathbf{pr}} \psi_{n_1}^*(\mathbf{u} - \mathbf{v}) \psi_{n_2}(\mathbf{u} - \mathbf{x}) \psi_{n_3}(\mathbf{x} - \mathbf{v})$$
(6)

Wave functions are obtained in relativistic string hamiltonian, with all energies of all states within 1-2% from experiment. Sometimes convenient to expand in series of oscillator functions.

Realistic w.f. of $\Upsilon(4S)$ (broken line) and approx. $(k_{\text{max}} = 4)$

Realistic w.f. of $\Upsilon(5S)$ (broken line) $k_{\text{max}} = 15$ (dash-dot), $k_{\text{max}} = 5$ (solid).

Conclusion: choosing $\left(\frac{M_{\omega}}{2\omega}\right)^2 \approx 0.6$ one has a reasonable agreement with experiment.

channel	1	2	3	4	5	6
$\Upsilon(5S) \rightarrow$	BB	BB^*	B^*B^*	$B_s B_s$	$B_s B_s^*$	$B_s^*B_s^*$
$P_k, { m GeV}$	1.26	1.16	1.05	0.835	0.683	0.482
$J_5 = I_5 e^{-\frac{p_k^2}{\Delta}}$	0.269	0.329	0.40	0.56	0.68	0.825
$\left(\frac{2\omega}{M_{\omega}}\right)^2 \Gamma_k, \text{ MeV}$	13.5	63.3	122	8.5	27.5	25

$$\bar{\Gamma}_{tot}(5S) = \left(\frac{M_{\omega}}{2\omega}\right)^2 260 \text{ MeV}$$

Taking $\left(\frac{M_{\omega}}{2\omega}\right)^2$ from $\Gamma^{th}(4S) = \left(\frac{M_{\omega}}{2\omega}\right)^2 44 \text{ MeV} = \Gamma^{\exp}(4S) \cong 20 \text{ MeV},$
one has

$$\left(\frac{M_{\omega}}{2\omega}\right)^2 \approx 1/2 \text{ and } \bar{\Gamma}_{tot}(5S) \approx 130 \text{ MeV.}$$

In experiment $\Gamma_{tot}^{exp} = (110 \pm 13) \text{ MeV} (CLE3)$

B-meson decays of $\Upsilon(5S)$

 $\Upsilon(5S) \to \text{channel } 1,2,3,4,5,6$ $BB, BB^*, B^*, B^*, B_s B_s, B_s B_s^*, B_s^* B_s^*$ $\Gamma_k \equiv \Gamma_{5S}(\text{channel } k) = \left(\frac{M_{\omega}}{2\omega}\right)^2 \frac{(p^{(k)})^2 M_k}{6\pi N_c} Z_k^2 |J_{5S}((p^{(k)})|^2$

coeff. Z_k^2 accounts for spin-isospin

$$Z_1^2 = 2Z_4^2 = 1, Z_2^2 = 2Z_5^2 = 4, Z_3^2 = 2Z_6^2 = 7$$

Note, that for $B_s, ..., Z_k^2$ are twice as small - no isospin. Also:

$$\frac{\Gamma_1^{\text{exp}}}{\Gamma_2^{\text{exp}}} < 0.92; \frac{\Gamma_1^{\text{exp}}}{\Gamma_3^{\text{exp}}} < 0.3; \frac{\Gamma_2^{\text{exp}}}{\Gamma_3^{\text{exp}}} = 0.324.$$
(7)

$$\frac{\Gamma_4^{\exp} + \Gamma_5^{\exp} + \Gamma_6^{\exp}}{\Gamma_{tot}} = 0.16 \pm 0.02 \pm 0.058$$
(8)

To compare with our averaged estimate $(\overline{\Gamma}(B_s)$ is reduced due to decrease of p^3)

$$\frac{\bar{\Gamma}_4 + \bar{\Gamma}_5 + \bar{\Gamma}_6}{\Gamma_{tot}} = 0.23$$

Taking into account also also that $\left(\frac{M_{\omega}}{2\omega}\right)^2 \rightarrow \left(\frac{M_{\omega}}{2\omega_s}\right)^2$, $\left(\frac{\omega}{\omega_s}\right)^2 = 0.844$. One obtains $\frac{\Gamma_s}{\Gamma_{tot}} = 0.19$. One can see that qualitatively (orders of magnitude) theory is correct, but more work is needed to make precision calculations of $\Upsilon(5S)$.

Dipion transitions

$$S_{SBr} = -i \int d^{\eta} x \bar{\psi}^f(x) M_{br} \hat{U}^{fg} \psi^g(x)$$
(9)

Pion emission inside $Q\bar{Q}$ system – the $Q\bar{Q}$ Green's function.

$$G_{Q\bar{Q}}^{q\bar{q},\pi\pi}(1;2;E) = \sum_{n,m} \frac{\psi_{Q\bar{Q}}^{(n)}(1)w_{nm}^{(\pi\pi)}(E)\psi_{Q\bar{q}}^{(m)+}(2)}{(E-E_n)(E-E_m)}.$$
 (10)

where

$$w_{nm}^{(\pi\pi)}(E) = \gamma \left\{ \sum_{k} \frac{d^3p}{(2\pi)^3} \frac{J_{nn_2n_3}^{(1)}(\mathbf{p}, \mathbf{k}_1) J_{mn_2n_3}^{*(1)}(\mathbf{p}, \mathbf{k}_2)}{E - E_{n_2n_3}(\mathbf{p}) - E_{\pi}(\mathbf{k}_1)} + (1 \leftrightarrow 2) \right\}$$

$$-\sum_{n'_{2}n'_{3}} \frac{d^{3}p}{(2\pi)^{3}} \frac{J_{nn'_{2}n'_{3}}^{(2)}(\mathbf{p},\mathbf{k}_{1},\mathbf{k}_{2})J_{mn'_{2}n'_{3}}^{*}(\mathbf{p})}{E - E_{n'_{2}n'_{3}}(\mathbf{p}) - E(\mathbf{k}_{1},\mathbf{k}_{2})} - \sum_{k''} \frac{d^{3}p}{(2\pi)^{3}} \frac{J_{nn''_{2}n''_{3}}(\mathbf{p})J_{mn''_{2}n''_{3}}^{(2)*}(\mathbf{p},\mathbf{k}_{1},\mathbf{k}_{2})}{E - E_{n''_{2}n''_{3}}(\mathbf{p})} \right\}$$
(11)

Here $\gamma = \frac{M_{br}^2}{N_c}$; note that $J_{nn_1n_2}(\mathbf{p})$ contains a factor $\left(\frac{M_{\omega}}{M_{br}}\right)$ due to $q\bar{q}$ creation without pions.

Kinematic and phase space

For 3 particles: $\pi_1, \pi_2, \Upsilon(n'S)$ there are 2 standard variables:

$$q^2 \equiv M_{\pi\pi}^2 = (\omega_1 + \omega_2)^2 - \mathbf{K}^2, \ \mathbf{K} \equiv \mathbf{k}_1 + \mathbf{k}_2$$

 $\cos \theta - \theta$ angle of π^+ w.r. to initial momentum.

 $M\text{-initial mass }\Upsilon(nS), M'\text{- final mass }\Upsilon(n'S), \Delta M=M-M'$

$$\mathbf{k}_1^2 + \mathbf{k}_2^2 = \frac{1}{8M^2} \left\{ \left((M + M')\Delta M + q^2)^2 + \right. \right.$$

$$+(M+M')^{2}(q^{2}-4m_{\pi}^{2})\left((\Delta M)^{2}-q^{2}\right)\frac{\cos^{2}\theta}{q^{2}}\right\}-2m_{\pi}^{2}\equiv\alpha+\gamma\cos^{2}\theta.$$
(12)

$$-\frac{\mathbf{K}^2}{4\beta_2^2} = -\frac{(\Delta M)^2 - q^2}{4\beta_2^2} \left(\frac{(M+M')^2 - q^2}{4M^2}\right) \equiv -\frac{(\Delta M)^2 - q^2}{4\beta_2^2} \cdot (1-\delta).$$
(13)

one can write differential rate

$$dw_{nn'}(q,\cos\theta) \equiv d\Phi |\mathcal{M}|^2, \qquad (14)$$

where phase space is in $d\Phi$

$$d\Phi = \frac{1}{32\pi^3 N_c^2} \left(\frac{M_{br}}{f_\pi}\right)^4 \frac{(M^2 + M^{'2} - q^2)(M + M^{'})}{4M^3} \times \sqrt{(\Delta M)^2 - q^2} \sqrt{q^2 - 4m_\pi^2} d\sqrt{q^2} d\cos\theta$$
(15)

and matrix element can be written.

Finally matrix element \mathcal{M} can be rewritten as

$$\mathcal{M} = \exp\left(-\frac{\mathbf{k}_1^2 + \mathbf{k}_2^2}{4\beta_2^2}\right) \left(\frac{M_{br}}{f_\pi}\right)^2 \mathcal{M}_1 - \exp\left(-\frac{\mathbf{K}^2}{4\beta_2^2}\right) \frac{M_{br}M_\omega}{f_\pi^2} \mathcal{M}_2$$
(16)

Alder-zero improvement and the final form of $\pi\pi$ spectrum

One can write matrix element as

$$\mathcal{M} = const \left(\bar{a} \ e^{-\frac{\mathbf{k}_{1}^{2} + \mathbf{k}_{2}^{2}}{4\beta_{2}^{2}}} \left(\frac{1}{\frac{\langle \mathbf{p}^{2} \rangle}{2\tilde{M}^{*}} + \omega_{1} + \Delta M_{nn'}^{*}} + \frac{1}{\frac{\langle \mathbf{p}^{2} \rangle}{2\tilde{M}^{*}} + \omega_{2} + \Delta M_{nn'}^{*}} \right) -$$

$$-\bar{b} \ e^{-\frac{(\mathbf{k}_{1}+\mathbf{k}_{2})^{2}}{4\beta_{2}^{2}}} \left(\frac{1}{\frac{\langle \mathbf{p}^{2} \rangle}{2\tilde{M}} + \Delta M_{nn'}} + \frac{1}{\frac{\langle \mathbf{p}^{2} \rangle}{2\tilde{M}} + \Delta M_{nn'} + \omega_{1} + \omega_{2}}\right)\right).$$
(17)

Alder zero conditions: for $\mathbf{k}_1 = \omega_1 = 0$ (or $\mathbf{k}_2 = \omega_2 = 0$) \mathcal{M} should vanish. This yields conditions

1)
$$\bar{a}(\mathbf{k}_1 = \omega_1 = 0, \ k_2) = \bar{b}(k_1 = \omega_1 = 0, k_2)$$
 (18)
2) $\frac{\langle \mathbf{p}^2 \rangle}{2\tilde{M}^*} + \Delta M_{nn'}^* = \frac{\langle \mathbf{p}^2 \rangle}{2\tilde{M}} + \Delta M_{nn'} \equiv \tau_{nn'}.$

As a result one arrives at the AZI form

$$\mathcal{M}_{nn'} = const \left(e^{-\frac{\mathbf{k}_1^2 + \mathbf{k}_2^2}{4\beta_2^2}} \left(\frac{1}{\tau_{nn'}(\omega_1) + \omega_1} + \frac{1}{\tau_{nn'}(\omega_2) + \omega_2} \right) - \right)$$

$$e^{-\frac{(\mathbf{k}_{1}+\mathbf{k}_{2})^{2}}{4\beta_{2}^{2}}}\left(\frac{1}{\tau_{nn'}(0)}+\frac{1}{\tau_{nn'}(\omega_{1}+\omega_{2})+\omega_{1}+\omega_{2}}\right)\right).$$
 (19)

This equation satisfies conditions 1) and 2) for any $\tau_{nn'}(\omega)$. In what follows we perform two calculations

I) without AZI and calculating explicitly all matrix elements II) with AZL i.e. using Eq. (52) and finding $\tau_{red}(\omega)$ from concr

II) with AZI, i.e. using Eq. (52) and finding $\tau_{nn'}(\omega)$ from concrete calculation.

Simple parametrization

$$x = \frac{q^2 - 4m_\pi^2}{\mu^2}, \quad \mu^2 \equiv (\Delta M)^2 - 4m_\pi^2, \tag{20}$$

In terms of variables x, $\cos \theta$ the dipion decay probability can be written as

$$dw_{\pi\pi}(n,n') = C_0 \mu^3 \int_0^1 \sqrt{\frac{x(1-x)}{x+\frac{4m_\pi^2}{\mu^2}}} dx \frac{d\cos\theta}{2} |\mathcal{M}(x,\cos\theta)|^2.$$
(21)

Simple form

$$\frac{dw}{dq} = const\sqrt{x(1-x)}|\eta(nn') - x|^2$$
(22)

$$const = C_0 \frac{\mu^6}{(4\beta_2^2)^2} |\mathcal{M}_1|^2 \approx 10^{-4} (\mu)^6 |\mathcal{M}_1|^2$$

For $\mu \sim O(1)$ GeV, $\mathcal{M}_1 \sim O(1 \text{ GeV}^{-1})$, $\Gamma_{\pi\pi} = \int dw = O(10^{-6} \text{ GeV})$ $\Gamma_{\pi\pi} \approx O(1 KeV)$

in accordance with experiment.

•

We calculate 3 types of theoretical output

1. the di-pion spectrum

$$\frac{dw_{\pi\pi}(n,n')}{dq} = C_0 \mu^2 \sqrt{x(1-x)} \int_{-1}^{+1} d\cos\theta |\mathcal{M}(x,\cos\theta)|^2$$
$$C_0 = \frac{1}{32\pi^3 N_c^2} = 1.12 \cdot 10^{-4}$$

2. the $\cos \theta$ distribution

$$\frac{dw_{\pi\pi}(n,n')}{d\cos\theta} = C_0 \mu^3 \int_0^1 \sqrt{\frac{x(1-x)}{x+\frac{4m^2}{\mu^2}}} \frac{dx}{2} |\mathcal{M}(x,\cos\theta)|^2$$

3. the 2d distributions

$$\frac{dw_{\pi\pi}(n,n')}{dxd\cos\theta} = f(x,\cos\theta)$$

For (n, n') = (2, 1), (1, 1), (3, 2), (4, 1) and (4, 2).

(2,1)

(3,1)

(3,2)

(4,1)

(4,2)

A special check: $\Upsilon(5S) \to \Upsilon(n'S)\pi\pi \ n' = 1, 2, 3.$

New features:

1) The dipion widths $\Gamma_{\pi\pi}(5,1), \Gamma_{\pi\pi}(5,2), \Gamma_{\pi\pi}(5,3)$ are ~ 1000 times larger than the corresponding widths for $\Gamma_{\pi\pi}(nn')$ with n = 2, 3, 4.

2) The hierarchy of the widths $\Gamma_{BB}(5S) < \Gamma_{BB*}(5S) < \Gamma_{B^*B^*}(5S)$ occurs in experiment with $\Gamma_{tot}(5S) \sim 0(100 \text{ MeV}).$

3) Dikaon width of $\Upsilon(5S)$ is ~ 1/10 of the dipion width.

4) The dipion spectra in (5,1), (5,2) transitions are not similar to spectra found for n = 2, 3, 4, showing a possible role of $\pi\pi$ FSI.

$$\mathcal{M} = \exp\left(-\frac{\mathbf{k}_1^2 + \mathbf{k}_2^2}{4\beta_2^2}\right) \left(\frac{M_{br}}{f_\pi}\right)^2 \mathcal{M}_1 - \exp\left(-\frac{\mathbf{K}^2}{4\beta_2^2}\right) \frac{M_{br}M_\omega}{f_\pi^2} \mathcal{M}_2.$$
(23)

$$\frac{dw_{\pi\pi}(n,n')}{dqd\cos\theta} = C_0 \mu^2 \sqrt{x(1-x)} |\mathcal{M}|^2.$$
(24)

Using Adler Zero Requirement (AZR) one can write

$$\mathcal{M} = \bar{\mathcal{M}}(\exp_1 - \exp_2 f(q)), \tag{25}$$

$$f(q) = \alpha f_{\sigma}(q) + \beta f_{f_0}(q) \tag{26}$$

$$f_{\sigma}(q) = \left[\frac{m_{\sigma}^2 - m_{\pi}^2)^2 + \gamma_{\sigma}^2}{(m_{\sigma}^2 - q^2)^2 + \gamma_{\sigma}^2}\right]^{1/2}, \ f_{f_0}(q) = \left[\frac{(m_{f_0}^2 - m_{\pi}^2)^2 + \gamma_{f_0}^2}{(m_{f_0}^2 - q^2)^2 + \gamma_{f_0}^2}\right]^{1/2} sign(m_{f_0} - q).$$
(27)

Fig. Comparison of theoretical predictions, Eqs. (25), (26) with experiment [?] for the dipion spectrum, $\frac{dw}{dq}$, in the $\Upsilon(5,1)\pi\pi$ transition. Theory: Eq. (25) with $f \equiv 1$ – broken curve, Eq. (25) with f as in Eq. (26) (parameters given in the text) – solid line. Theoretical curve is normalized to the total experimental width $\Gamma_{\pi\pi}^{\exp} = \frac{dw}{dq} dq$.

Fig. The same as in Fig.3, for the angular distribution $\frac{dw}{d\cos\theta}$ in the $\Upsilon(5,1)\pi\pi$ transition.

Fig. The same as in Fig.3, for the dipion spectrum $\frac{dw}{dq}$ in the $\Upsilon(5,2)\pi\pi$ transition.

Fig. The same as in Fig.3, for the angular distribution $\frac{dw}{d\cos\theta}$ in the $\Upsilon(5,2)\pi\pi$ transition.

$K\bar{K}$ transition

$$\Gamma_{KK}(5,1) = C_0 \mu_K^3 \int_0^1 dx \sqrt{\frac{x(1-x)}{x + \frac{4m_K^2}{\mu_K^2}}} \int_{-1}^{+1} \frac{d\cos\theta}{2} |\mathcal{M}_k|^2.$$
(28)

Here
$$\mu_K^2 = (\Delta E)^2 - 4m_K^2 = 0.985 \text{ GeV}^2$$
, $\mu_K = 0.992 \text{ GeV}$.

As a result, approximating the ratio of integrals over dx as 1/2, one obtains

$$\frac{\Gamma_{KK}(5,1)}{\Gamma_{\pi\pi}(5,1)} = \frac{1}{2} \left(\frac{\mu_K}{\mu}\right)^3 \left(\frac{f_\pi}{f_k}\right)^4 = 0.194 \left(\frac{f_\pi}{f_K}\right)^4 = 0.092 \approx 1/10,$$
(29)

where we have used $f_{\pi} = 93$ MeV, $f_K = 112$ MeV [?].

Single eta emission and breakdown of multipole expansion

Consider

$$\Upsilon(nS) \to \Upsilon(n'S)\eta$$

denoted $\Upsilon(n, n')\eta$.

In our method – with M_{ω} and M_{br} – weak dependence on heavy quark mass, similar results for charmonium and bottomonium.

This is in contrast to Multipole Expansion method (MEM), where prediction is

$$\frac{\Gamma(\Upsilon(2,1)\eta)}{\Gamma(\psi(2,1)\eta)} \cong 2.5 \cdot 10^{-3} \text{ and } \frac{\Gamma(\Upsilon(3,1)\eta)}{\Gamma(\psi(2,1)\eta)} = 1.3 \cdot 10^{-3}$$
(30)

also (Voloshin, Zakharov) in MEM it is predicted that

$$\Gamma_{\eta}/\Gamma_{\pi\pi} \sim \frac{p_{\eta}^3}{(\Delta M)^7}, \quad \Delta M = M(\Upsilon(nS)) - M(\Upsilon(n'S)).$$

Both predictions do not agree with experiment (BaBar (2008))

$$\frac{\Gamma(\Upsilon(4,1)\eta)}{\Gamma(\Upsilon(4,1)\pi^+\pi^-)} = 2.41 \pm 0.40 \pm 0.12.$$
(31)

In our formalism one has graphs

The amplitudes are

$$\mathcal{M} = \mathcal{M}_{\eta}^{(1)} + \mathcal{M}_{\eta}^{(2)}; \\ \mathcal{M}_{\eta}^{(i)} = \mathcal{M}_{B_s B_s^*}^{(i)} - \mathcal{M}_{BB^*}^{(i)}, \\ i = 1, 2$$
(32)

$$\mathcal{M}_{\eta}^{(1)} = \int \frac{J_{n}^{(1)}(\mathbf{p}, \mathbf{k}) J_{n'}(\mathbf{p})}{E - E(\mathbf{p})} \frac{d^{3}\mathbf{p}}{(2\pi)^{3}},$$
(33)

$$\mathcal{M}_{\eta}^{(1)} = e_{ii'l} k_l \left(\frac{1}{\omega_s^3} \mathcal{L}_s^{(1)} - \frac{1}{\omega^3} \mathcal{L}^{(1)} \right)$$
(34)

$$\Gamma_{\eta} = \frac{1}{3} \sum_{i,i'} |\mathcal{M}|^2 d\Phi = \frac{2k^2}{3} d\Phi \left| \left(\frac{\mathcal{L}_s^{(1)}}{\omega_s^3} - \frac{\mathcal{L}^{(1)}}{\omega^3} \right) + \left(\frac{\mathcal{L}_s^{(2)}}{\omega_s^3} - \frac{\mathcal{L}^{(2)}}{\omega^3} \right) \right|^2 \quad (35)$$

Here ω_s, ω are average energies of *s*-quark and *u*, *d* quark in B_s or *B* meson respectively. Calculation with relativistic QCD string Hamiltonian yields $\omega_s = 0.639 \text{ Gev}, \omega = 0.587 \text{ GeV}$ when $\omega_s = \omega$ one has $\Gamma_{\eta} = 0$. results are given in Table

Table 3. Values of $\Gamma_{\eta}(n, n')$ (in keV) calculated using Eq. (??) vs experimental data $\Gamma_{\eta}^{\exp}(n, n')$ (in keV).

(n,n')	$2,\!1$	$_{3,1}$	$4,\!1$	5,1
$\frac{\Gamma_{\eta}(n,n')}{\left(\frac{M_{br}}{f_{\pi}}\right)^2 \left(\frac{M_{\omega}}{2\bar{\omega}}\right)^2}$	$5.0 \cdot 10^{-2}$	2.9	1.81	7.04
$\Gamma^{\mathrm{exp}}_\eta(n,n')$	$(0.8\pm0.3)\cdot10^{-2}$	_	4.02 ± 0.6	_
	[4]		[12]	

Conclusion: Our method gives a reasonable prediction for γ_{η} (up to a factor ~ 2). Note $\Gamma_{\eta}(5,1) \approx 7$ keV (large!)

Strong channel interaction and new XYZ states. Project.

Channel coupling is due to $X \to D\overline{D} \to X'$ where X is any heavy Quarkonia state.

One can write interaction kernel (potential, but energy dependent)

channel 1, X_n , discrete spectrum channel 2, $D_{n_2}\bar{D}_{n_3}$ two body free

General Theory of CC interaction is in Badalian, Kok, Polykarpov, Yu.S. Phys. Rept. '83

CC Interaction in channel 2.

$$V_{212}(\mathbf{r}, \mathbf{r}', E) = \frac{M_{\omega}^2}{N_c} \sum_n \frac{J_n(\mathbf{r})J_n(\mathbf{r}')}{E_n - E}$$

 $J_n(\mathbf{r})$ – overlap integral

$$J_n = J_{nn_2n_3} = (\Psi_n / \psi_{n_2} \psi_{n_3})$$

 $||V_{212}||$ is large and able to support its own bound states!

Equation for level positions and widths

$$g_{mn}^{(2)}(E) = \frac{m_{\omega}^2}{N_c} \int \frac{J_m^*(\mathbf{k}) J_n(\mathbf{k}) d^3 \mathbf{k}}{\frac{\mathbf{k}^2}{2M_2} - E(2\pi)^3}$$
$$det(\delta_{mn} - \frac{g_{mn}^{(2)}(E)}{E - E_n}) = 0$$

For one level new position E_n^*

$$E_n^* = E_n - g_{nn}^{(2)}(E)$$
$$\Gamma_n = 2Jmg_{nn}^{(2)}(E_n)$$

Was used above for $\Upsilon(nS) \to B\overline{B}$.

Project:

- 1. Study of new X, Y, Z states as possible CC resonances.
- 2. Calculation of CC energy shifts and widths of legitimate $Q\bar{Q}$ resonances.
- 3. Calculation of $\pi Q \bar{Q}$ and $\pi \pi Q \bar{Q}$ resonances. (The same interaction kernel!)

Conclusions

- 1. interaction of $X(Q\bar{Q})$ with heavy-light mesons is strong, $M_{\omega} \approx 1 \text{ GeV}$
- 2. Interaction of pions with $X(Q\bar{Q})$ is weaker, $M_{br} \sim 0.1$ GeV, but still strong.
- 3. Decays $X \to B\bar{B}, ...$ are well described by theory with $\left(\frac{M_{\omega}}{2\omega}\right)^2 \approx 0.6$.
- 4. Dipion spectra are well reproduced by theory when $\left(\frac{M_{br}}{f_{\pi}}\right)^2 = 1.6$.
- 5. Single η, π and γ are predicted in the same mechanism.
- 6. Framework for multichannel calculations is created.