

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

# A Shower Tracking Calorimeter for PANDA

### Lars Schmitt

GSI, Darmstadt

# PANDA Forward Spectrometer Subgroup Meeting, GSI, June 2006



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

# Outline



### 2 Realisation

### 3 Summary



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

# Requirements

### Electromagnetic Calorimetry

- Problem: shower leakage
- $\rightarrow$  Add HCAL energy

#### Hadronic Calorimetry

- Problem: e/h separation
- $\rightarrow$  Use shower depth for separation

#### Muon Detector

- Problem: Full calorimeter is too much absorber
- $\rightarrow$  Insertion of muon detector
- $\rightarrow$  Not possible in normal calorimeter

PANDA STC Calorimeter Concept



## **PANDA**



PANDA STC Calorimeter Concept



# An STC Module



### Shashlik EMC Muon Hodoscope Segmented HCAL

L. Schmitt, GSI, June 2006

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶



# Outline

Calorimeter Concept

### 2 Realisation







# Realisation

### Basic Building Blocks

- Front part: Shashlik type ECAL,  $6.6 \times 6.6 \text{ cm}^2$  (close to Moliere radius of 5.8 cm)
- Back part: Refurbished MIRAC material, maybe Shashlik HCAL, 20 × 20cm<sup>2</sup>
- Scinitillator Hodoscope with  $5 \times 5$  cm<sup>2</sup> tiles

### Segmented Light Collection

- Front part: longitudinal segmentation by cladding fibres at 3 different depths and collection on separate PM channels
- Intersction: ECAL fibres are collected on the side with a steel fibre guide (already part of HCAL absober)
- Back part: Light collection either by WLS around scintillators or again Shashlik type collection (probably less fibres needed)
- Muon part: Individual WLS fibres for tiles



# Readout

### Readout channels

- The segmentation gives 64 cells:
- $2 \times 16$  channels for muon hodoscope
- $\bullet~3\times9$  channels for ECAL part
- 5 channels for HCAL part

#### Photon detectors

- $\rightarrow$  64 channels per module
  - Use 4 16-channel MAPMTs (maybe with thinner WLS fibres)
  - Ideal candidates: MAPMTs from HERA-B RICH (1000 pieces)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- $\rightarrow$  Still reserved for COMPASS!
- Alternative: 64-channel MAPMT or MCP



# Outline

Calorimeter Concept

### 2 Realisation







▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

# Summary

#### Advantages

- Tailored muon detection
- Good e/h separation
- Compact overall design
- Detector synergy

### Next steps

- Discuss detector concept
- Find interested group(s)
- Clarify situation with HERA-B PMTs (plan budget with and without)
- Build prototype module